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1 SUMMARY 

Power and data cabling are attached to a spacecraft bus structure at many points and can account 
for a significant fraction of a spacecraft's dry mass. This combination leads to coupled spacecraft 
and cable dynamics that require a model to predict the effects of this interaction. While current 
models can accurately predict vibration frequencies, typical proportional damping models are 
inadequate. Instead, a viscous damping model that produces approximately frequency-
independent modal damping in Euler-Bernoulli and shear beams is considered. The relevant 
viscous damping terms (as well as those commonly employed in proportional damping 
approaches) are extended and modified for application to Timoshenko beams. The inclusion of 
rotary inertia does add some frequency-dependence; however, careful selection of damping 
coefficients can produce a large range of approximately frequency-independent modal damping. 

This paper will specifically consider a careful selection of coefficients for the rotation-
based viscous damping models to provide modal damping that is approximately independent of 
modal frequency, at least over a significant range of vibration modes. Guidance in this parameter 
selection and the resulting modal damping will be presented for several combinations of 
canonical boundary conditions, including simply-supported and clamped-clamped Timoshenko 
beams. Furthermore, a series expansion of the mathematical form of  “square-root" damping will 
be explored to provide an increased range of frequency-independent modal damping and a 
corresponding explanation of the underlying dissipative physical mechanisms. 
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2 INTRODUCTION 

 Recent advances in spacecraft observation, data handling, and vibration control capabilities and 
requirements have led to large amounts of power and data cabling on spacecraft. Coupled with 
materials advances that lead to structural materials with decreased density, these cables can 
account for a large proportion of the spacecraft mass. In fact, this cabling mass ratio can reach 
30% (of the dry mass) for some spacecraft [1,2].The cabling is attached to the spacecraft 
structure at a large number of points, leading to coupled spacecraft dynamics. While this 
coupling is not typically modeled in the design process, it is commonly observed during ground 
system-level testing. In most cases, this testing provides the data required to model the spacecraft 
structure and cabling interaction; however, an accurate model during the initial design phases is 
significantly more desirable. 

Spacecraft cabling typically consists of wrapped, stitched, and twisted wires, so previous 
research toward such a model treated the cabling as shear beams with effective parameters [1-4]. 
While individual cable bundles can be long and slender, they are tightly secured at numerous tie 
down points. As such, previous research treated each bundle as a series of short beams with a 
free span between those tie down points. Initial research efforts employed structural damping 
through a loss factor in a NASTRAN finite element model. While providing adequate results for 
frequency-domain modeling, a time-domain model was desired. Furthermore, experimental tests 
indicated the cable bundles displayed modal damping that was approximately constant across a 
range of vibration modes. As such, a viscous damping model developed by Lesieutre that 
produced frequency-independent modal damping in Euler-Bernoulli beams was extended to and 
modified for the shear beam [5,6]. This model yielded modal damping that was approximately 
frequency-independent and agreed well with experimental data. On that basis, this paper will 
further extend and modify the model for application to Timoshenko beams by including the 
effects of rotary inertia. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

 

3.1 Damping Model Background 

There are several common approaches to incorporate a damping model for Timoshenko 
beams. Perhaps the most common is the structural damping model. Taken to its extreme, it 
accommodates a complex form for every parameter of the system. As an example, Lunden and 
Akesson showed this approach results in 14 damping terms, although simultaneously pointing 
out that in practical terms all but a few of these terms would be identically zero [7]. More typical 
is a complex form of the Young's and shear moduli, resulting in at most two damping terms [7-
11]. While these methods are ill-suited for time-domain modeling, they can provide valuable 
insight into potential damping models. 

The second common approach is through the inclusion of proportional damping terms. 
Here damping terms result as some combination of terms proportional to the mass and stiffness 
terms [12-19]. This technique is mathematically convenient; however, it fails to provide modal 
damping that is physically realistic. Indeed, a high degree of frequency-dependence is seen with 
proportional damping, whether formulated for an Euler-Bernoulli or Timoshenko beam. 
Lesieutre provided a solution for this unrealistic behavior, developing a “rotation-based" (also 
called “geometric-based") viscous damping model that results in approximately frequency-
independent modal damping for Euler-Bernoulli beams [5]. Subsequent research extended and 
modified this model for application to shear beams; that model serves as the starting point for 
this study of frequency-independent modal damping for Timoshenko beams [6]. 

3.2 Governing Equations of Motion 

Including rotary inertia and _rst-order transverse shear deformation, the governing equations of 
motion for a Timoshenko beam without damping and subject to transverse loading are 

   (1) 

where the shear deformation is described by 

      (2) 
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Note that this approach results in three coordinates to describe the beam, yet only two are 
independent. The following approach continues in terms of the beam displacement (w) and the 
slope of the beam centerline associated with bending (φ) only. Analysis in terms of the shear 
deformation (β) yields identical results. 

For simplicity, restrict the beam to have constant properties along its length. Denoting 
spatial partial derivatives as ( )’ and temporal partial derivatives as (.), the equations of motion 
are 

    (3) 

These equations of motion can be written in terms of a single coordinate; however, the 
current effort will incorporate damping terms that precludes such a simplification.  

This initial analysis treats a simply-supported Timoshenko beam; the associated boundary 
conditions require both the displacement and bending moment be zero at the beam endpoints: 

   (4) 

Subsequent analysis may consider alternative boundary conditions. For example, a clamped-
clamped Timoshenko beam requires the displacement and slope associated with bending to be 
zero at the beam endpoints: 

   (5) 

Viscous Damping Models 

Several viscous damping models are considered here. They can largely be classified as 
motion-, rotation- (or geometric-), and strain-based models. Two motion-based terms are 
proportional to the inertia of the beam and represent loads that oppose the beam velocity (αMw) 
and rotation rate (αMφ). Two strain-based terms are proportional to the rigidity of the beam and 
represent loads that oppose the temporal rates of change of beam centerline curvature (αKφ) and 
shear curvature (αKβ). Finally, rotation- (geometric-) based terms are associated with loads that 
oppose the temporal rates of change of the beam centerline angle (αφ) and shear angle (αβ). The 
resulting equations of motion are 

 (6) 
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Note that due to the use of all three coordinates, some of these damping terms will necessarily 
overlap; in fact, some terms may actually offset the damping introduced by other terms. For 
example, the equations of motion were presented in terms of the displacement (w) and slope of 
the beam centerline associated with bending (φ) only; substituting Equation (2) into Equation  
(6) yields: 

 (7) 

In the first equation, the ሶ߮ ' term is multiplied by the difference between αφ and ακβ. That is, 
independent selection of positive damping coefficients can result in negative damping. As such, 
the damping coefficients are coupled and must be selected together, just as the beam 
displacement (w), centerline bending angle (φ), and shear deformation (β) are coupled and must 
be analyzed jointly. 

3.3 Finite Element Model 

Unlike the Euler-Bernoulli and shear beams, the damped Timoshenko beam equations of 
motion are, in general, not readily treated analytically through consideration of modal motion. 
While some limited combinations of viscous damping models and boundary conditions admit 
such an approach, numerical techniques are required for a more general analysis. As such, a 
finite element formulation is developed from the weak form of the damped equations of motion. 

Discretization of Equation of Motion with Damping Terms 

Beginning with a weak formulation of the unforced Timoshenko beam equations of 
motion, application of the Galerkin method of weighted residuals and integration by parts results 
in 

 (8) 

The next step is the introduction of a set of shape functions for the coordinates, w and φ, 
taking care to avoid the shear locking problem. Several such approaches exist; the solution 
employed here is to interpolate the displacement, w, using cubic shape functions and the 
centerline slope associated with bending, φ, using quadratic shape functions [20]. The 
coordinates can thus be written in terms of the shape functions 
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      (9) 

where 

     (10) 

The shape functions are 

  (11) 

     (12) 

Where ϕ is an elemental shear stiffness parameter: 

      (13) 
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Inserting these shape functions in Equation (8) ultimately leads to the mass, damping, and 
stiffness matrices for each element. The elemental mass matrix comes from terms involving the 
second time derivative of the displacements and rotations: 

    (14) 

where ܴ ൌ   .is a parameter describing the effect of rotary inertia ܣߩ/ܫߩ

The elemental stiffness matrix comes from terms involving no time derivatives: 

 (15) 

where ܵ ൌ  is a parameter describing the effect of transverse shear. Note that, in contrast 	ܫܧ/ܩܣ݇
to R, large values of S indicate that transverse shear can largely be neglected (since the beam is 
very stiff in shear compared to bending). 

Finally, the elemental damping matrix comes from terms involving a single time 
derivative: 

 (16) 
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4 RESULTS AND DISCUSSIONS 

4.1 Modal Damping Values for Several Viscous Damping Models 

The key result is that the rotation-based viscous damping models can provide modal 
damping values with less frequency dependence than those produced by common motion- and 
strain-based viscous damping models. However, the effects of shear deformation and rotary 
inertia re-introduce the frequency-dependence commonly seen with motion- and strain-based 
models, although to a lesser extent. 

Figure 1 shows the modal damping values produced by the various damping models 
when the shear deformation and rotary inertia effects are present but small. As is expected from 
the analysis of Euler-Bernoulli beams, the motion-based model provides modal damping that 
very rapidly decreases with mode number, while the damping values produced by the strain-
based model increase unrealistically with mode number. The two rotation-based models as 
developed for the shear beam provide modal damping that is approximately constant with mode 
number. Note that the finite element analysis used 50 elements, so numerical artifacts may have 
some effect for the higher mode numbers. 
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Figure 1 Modal damping for several viscous damping models with small shear deformation 
and rotary inertia effects. 

Figure 2 shows the modal damping values produced when the shear deformation and 
rotary inertia effects are significant (well beyond that typically observed in spacecraft wiring 
harnesses). Again, the motion-based model provides modal damping that very rapidly decreases 
with mode number, while the modal damping produced by the strain-based model increases very 
rapidly with mode number. In this case, the two rotation based models now also provide modal 
damping that decreases or increases with mode number, though not nearly as quickly as that of 
the motion- and strain-based models. As such, a combination of these models (with some 
modification) is expected to provide approximately frequency-independent modal damping over 
a significant range of vibration modes. Certainly motion- and strain-based viscous damping 
models can also be modified to provide approximate frequency-independence over a small range 
of modes; similar use of the rotation-based damping models should significantly extend that 
range. 

Finally, note that Figures 2(c) and 2(d) show significant damping for only some of the 
modes. Figure 2(d) makes this point most clearly, with approximately linearly increasing modal 
damping for one set of modes and approximately constant (but zero!) modal damping for another 
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set of modes. In fact, the modes with approximately linearly increasing modal damping have 
deflection shapes that primarily reflect shear deformation. Conversely, the modes with nearly 
zero modal damping exhibit deflection shapes that primarily involve bending. Indeed, this 
particular model involves only damping associated with the shear angle, so it makes sense that 
modal damping is significant in those modes most heavily associated with shear deformation. 
This behavior also provides insight into the damping model effects and may further guide the 
selection of damping coefficients to produce frequency-independent modal damping across both 
sets of modes. 

Figure 2 Modal damping for several viscous damping models with large shear deformation 
and rotary inertia effects. 

 

4.2 Mathematical Aside 

Previous research has indicated that so-called \square-root" damping results in modal 
damping that is independent of frequency [21]. This approach involves representing the 
governing equation of motion in terms of differential operators: 



 

 

 

Approved for Public Release; distribution is unlimited. 
 11 

     (17) 

where γ includes the coordinate(s) describing the system configuration and f includes the 
external load(s) acting on the system. A damping differential operator that is twice the square 
root of the product of the mass and stiffness differential operators can be scaled to produce a 
desired modal damping ς0 that is independent of frequency [6]: 

     (18) 

In general, the square root of these operators depends on the system boundary conditions; 
however, approximate results can be found that provide modal damping that is approximately 
constant, at least over a large range of mode numbers. 

Comparing Equation (17) with Equation (3), the mass and stiffness operators for a system 
with constant properties are, in matrix form, 

 (19) 

While the square root of the mass operator is straight-forward, the square root of the 
stiffness operator is much more involved. Yet even for the shear beam (in which the differential 
operators are scalars instead of matrices), this approach did not yield terms that were easily 
explained in terms of physical dissipative mechanisms. A series expansion of the square-root 
damping terms, however, did lead to viscous damping terms that had clear physical 
underpinnings and provided approximately frequency-independent modal damping. As such, a 
similar series expansion will be explored for the Timoshenko beam in terms of physical 
dissipative mechanisms. 

 (20) 
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5 CONCLUSIONS 

Previous research developed viscous damping models that resulted in approximately 
“frequency-independent" modal damping for both Euler-Bernoulli and shear beams. This 
research extends those models to a Timoshenko beam and examines their behavior (as well as 
that of more common proportional damping models) when rotary inertia effects are significant. 
In that case, the rotation-based model associated with the temporal rate of change of the 
centerline bending angle ' provides modal damping that decreases with mode number, though to 
much less degree than that of typical motion-based (mass-proportional) models. Similarly, the 
rotation-based model associated with the temporal rate of change of the shear angle _ provides 
modal damping that increases with mode number, though to much less degree than that of typical 
strain-based (stiffness-proportional) models. 
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